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Experimental and numerical studies were made of the secondary flow induced in 
fully developed oscillatory laminar flow in a curved circular pipe. Photographs of 
traces of nylon particles suspended in water were taken systematically with 
Womersley numbers 01 = 5.5 - 28 and oscillatory Dean numbers D = 40 - 500. The 
secondary flow velocity component and the location of the vortex eye were obtained 
from the photographs. The experimental results were checked with the numerical 
ones and the variations of the secondary flow pattern with the Dean and Womersley 
numbers were analysed based on both results. These results suggest that secondary 
flows can be classified into five patterns. 

1. Introduction 
The complex flow in a curved pipe is of interest not only as a scientific problem but 

also in practical engineering problems such as the design of heat exchangers and 
chemical reactors. 

In earlier studies, Dean (1927, 1928) analysed laminar steady flow in a circular 
curved pipe for small values of Dean number by the perturbation method. His 
studies were followed by the investigations of Topakoglu (1967), Sankaraiah & Rao 
(1973), Li (1976) and Van Dyke (1978) with the help of the successive approximation. 
Adler (1934) and others (e.g. Barua 1963; Ito 1969; Smith 1976) analysed 
approximately the high-Dean-number flows by applying the concept of boundary- 
layer theory and proved that the method is effective for estimating the resistance 
factor. Since the development of electronic computers, interesting numerical results 
for intermediate Dean numbers have been presented by Truesdell & Adler (1970) and 
others (e.g. Akiyama & Cheng 1971 ; Kalb & Seader 1972; Austin & Seader 1973; 
Tarbell & Samuels 1973; Greenspan 1973; Collins & Dennis 1975). Though the 
studies of steady flow are not reviewed in detail here, it is sufficient to note that many 
studies have been made for a wide range of Dean numbers. 

The most recent interest in curved pipe flow has been concentrated on unsteady 
flow with reference to physiological problems. As the phenomenon of unsteady flow 
is very complicated, oscillatory or pulsatory flow, being the most simple case, has 
been chosen in many studies. There are detailed reviews of unsteady curved pipe flow 
in the works of Berger, Talbot & Yao (1983) and Chang & Tarbell (1985), but here 
only works on purely oscillatory flow relevant to the present study are reviewed. 
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Lyne (1970) developed a perturbation theory, for small values of the frequency 
parameter /3( = 4 2 / a ) ,  for the flow under a sinusoidally varying pressure gradient 
and obtained the asymptotic solutions for two cases of R, < 1 and R, % 1, where a 
is the Womersley number and R, the Reynolds number of secondary flow. He showed 
that two couples of vortices are induced for sufficiently high Womersley numbers. 
The new secondary flow found by Lyne was confirmed by Zalosh & Nelson (1973) and 
Mullin & Greated (1980) by using the perturbation method which was similar to  that 
employed in Dean’s work (1927, 1928) for steady flow. A more recent study 
(Eckmann & Grotberg 1988), using a regular perturbation method, which was 
conducted in connection with a mass transfer problem, also verified Lyne’s 
prediction. Christov & Zapryanov (1980) also proved the formation of Lyne 
circulation by solving numerically the governing equations, simplified by the 
assumption of a large curvature ratio of the pipe. 

The interesting nature of the secondary flow stimulated many experimentalists. 
Lyne (1970) injected dye into the flow through a clear plastic pipe and viewed the 
streak a t  a = 28. The photographs taken suggested that there exist four vortices, 
that  is, two couples of vortices in a cross-section. Munson (1975) observed the 
movement of the streak of dye for the range 0.7 5 a 6 3 2  and measured the 
secondary flow velocities at the pipe-axis on the basis of the picture. Bertelsen (1975) 
and Bertelsen & Thorsen (1982) succeeded in taking pictures of Lyne circulation by 
an aluminium-powder tracer technique. 

Unfortunately, however, all of the visualization experiments have been concerned 
with the flows for low Dean numbers, that is, D 5 10 and extreme Womersley 
numbers, and only confirmed the theoretical results qualitatively. Therefore, useful 
results have not been obtained for practical problems, in which the Dean number 
goes up to the order of 100 and the Womersley number shows moderate values. For 
example, in blood flow through an aorta, which has led researchers to study the 
oscillatory flow in a curved pipe, the Womersley number a has values of 8-16, at 
which the flow presents different characteristics from the Dean- type motion for low 
Womersley numbers and the Lyne-type one for high Womersley numbers. Thus it is 
hoped to obtain much useful information for practical flows such as the flow in the 
aorta. 

The purpose of this study is to treat the problem of fully-developed, laminar 
oscillatory flow in a circular curved pipe by experimental and numerical means and 
especially to obtain the knowledge of secondary flow in a wide range of Dean and 
Womersley numbers. 

2. Experimental apparatus and procedures 
The schematic diagram of the experimental apparatus employed in this study is 

shown in figure 1. The pipe system consists of a helical pipe connected to two straight 
pipes a t  its inlet and exit and filled with water. The helical pipe with a circular cross- 
section is made of a transparent glass tube with a refractive index of 1.46, and is 
turned into three loops with small pitch. The dimensions of the pipe are as follows : 
inside diameter, 2a, is 14.1 mm and outside diameter 18.0 mm; radius of helix 
R = 53.3 mm; curvature ratio of the pipe Rc( = R/a) = 7.6 (see figure 2). One of five 
piston pumps with a scotch yoke mechanism, which is suitably chosen according to 
the experimental conditions, is attached to one end of the pipe and driven 
harmonically by a variable speed motor. The diameter of each pump is 6, 10, 15, 20 
and 28 mm and the stroke of the piston lies in the range 0-100 mm. The pipe is put 
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Water bath 

FIGURE 1.  Experimental apparatus, showing the flow generator with the scotch yoke mechanism, 
the pipe system, the back pressure controller and visualizing and photographing devices. 

in a transparent box-type bath, in which water circulates, so as to reduce light 
refraction due to the pipe curvature. A desirable flow-rate in sinusoidal waveform is 
obtained by adjusting the variable speed motor and choosing the appropriate piston 
pump, which is expressed in terms of the axial velocity averaged over the cross- 
section : w, = zZI,sin@, 

where O( = wt)  is the phase angle, w the angular frequency of oscillation, t the time 
and 221, the amplitude of w,. 

The secondary flow observations are made by means of a tracer method. 
Approximately spherical nylon particles having an average diameter of about 90 pm 
are chosen as tracers because their specific gravity is about unity and they reflect the 
illuminated light efficiently from their surface. Measurements are made at streamwise 
station = 450' (one and a quarter loops), q5 being the angle measured along the z- 
axis from the helical pipe inlet. The fluid layer to be recorded is illuminated by a 
sheet of stroboscopic light and the paths of the tracer particles irradiated are 
photographed from the direction shown in figure 1. The stroboscopic illumination is 
repeated in synchronization with a time-marker signal which indicates the position 
of the piston every one degree. 

The photographic recordings are obtained by the following alternative methods, 
according to the distance s of which nylon particle makes a run in the cross-section 
during a cycle of the oscillatory motion of the fluid. For the case of large s (that is, 
s 2 0 . 2 ~ )  where tthe Womersley number a is low, the fluid layer is illuminated with 
a sequence of 3-5 irradiations in the vicinity of a fiducial phase, e.g. 8 = 0" which is 
the maximum accelerative phase or Q = 90" which corresponds to the maximum flow 
rate in a cycle. In this case, the frequency of irradiation is 5-50Hz and the 
irradiative phase interval AQ is 2-15'. The symbol @ is used to represent this 
method hereinafter. On the other hand, when s reduces with an increase of the 
Womersley number, it becomes harder to catch the streaks of the particles at a 
fiducial phase and its vicinity in one cycle. In  such flows, the fluid in the central 
region of the pipe moves in the same phase with the piston pump and the axial 
velocity becomes uniform except near the wall. This means that the particles 
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Curvature ratio Re = 7.6 
TABLE 1 .  Details of the experimental conditions. 8 denotes the phase angle when the photograph 
is taken and A 8  the interval of the stroboscope irradiation. At is the real time interval between 
the irradiations and Tp the period of the oscillatory motion. 

illuminated at  a given phase 0 will still exist in the same cross-section after one cycle, 
that is, at  the phase of (0+27r). For this case of small s (that is, s 5 0.14a), therefore, 
one flash of the stroboscope is given at  1-15 cycles, the flash interval of the 
stroboscope corresponding to the real time interval At of 0 . 2 5 5  s. One photographic 
recording is obtained by 5-25 repetitions of flash. This procedure is called method Q. 
In conclusion, the instantaneous velocities averaged a t  the fiducial phase and its 
vicinity are obtained in method @ and the time-averaged velocities over one cycle 
are given in method Q, respectively. 

Using the above-stated methods, the instantaneous or time-averaged velocity 
vectors of the secondary flow can be readily determined independent of the time 
exposing a film or the time necessary for tracer particles to pass through the section 
illuminated. 

Though the optical distortion due to the pipe curvature is reduced by putting the 
pipe in the water bath, it is still necessary to take care in photographing the outer 
region of the cross-section. In this recording system, the length along the x-axis from 
the pipe-axis to the wall observed by the camera is different in outer and inner bends ; 
the length to the inner bend is longer than that to the outer bend, the ratio being 
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about 1 : 0.92. This is taken into account when the velocity vectors of the secondary 
flow are determined from the photographs. 

The preliminary measurements made in the cross-section a t  q5 = 810" (two and a 
quarter loops) prove that the flow is fully developed at  q5 = 450". 

The experiments were carried out in the range of Womersley numbers a( = a[o/v]i)  
of 5.5-28 (in other words, frequencies of 0.12-3.4Hz) and Dean numbers 
D( = Re[a/R]i) of 4&500 in order to study systematically the secondary-flow 
characteristics ; the Dean number corresponds to the Reynolds number Re( = 2aG,/v) 
of 110-1400, G,,, taking the values of 1-13 cm/s, where v is the kinematic viscosity 
of the fluid. Details of the experimental conditions are given in table 1.  

3. Numerical analysis 
A system of coordinates as shown in figure 2 is chosen for the analysis. The flow 

in a curved pipe is assumed to be a fully-developed laminar flow of incompressible 
viscous fluid, the pipe itself being coiled in a curvature radius R .  The velocity 
components corresponding to coordinates (x, y ,  x )  are (u, w, w) which are independent 
of z. All dimensions are made dimensionless with reference to the pipe radius a. The 
velocities are non-dimensionalized with v la  after the past numerical analyses (e.g. 
Truesdell & Adler 1970; Kalb & Seader 1972; Austin & Seader 1973). The other 
physical quantities can be made dimensionless by use of the density p and kinematic 
viscosity v of the fluid. 

Therefore, the following non-dimensional notations are introduced : 

X = x / a ,  Y = y /a ,  Z = z / a ,  r = r'/a, Rc = R / a ,  
U = au/v ,  V = av/v ,  W = aw/v,  P = a2p/ (pv2) ,  ] (2) 
T = vt/a2, A2 = &a2/v, Y = @/v, 

where & and $ denote the vorticity and stream function of the secondary flow 
respectively; p is the pressure and r' and 8 are radial and angular positions. The 
governing equations for the fluid motion in the toroidal coordinates ( r ,  8,Z) are given 
in terms of W ,  i2 and Y as follows: 

where 
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J’ 

FIGURE 2. Coordinates of the curved circular-pipe section. 

We now impose the following sinusoidal flow rate so as to correspond with the 
experimental condition ; 

where Q is the dimensionless flow rate, that is, Q = q / (ua ) .  
The boundary conditions are derived from the physical considerations : 

I at  the X-axis (0 = -kin), 

I i a 2 y  W = Y = 0 ; D  = -- 
H ar2 

at  the wall ( r  = l ) ,  

- _  - 0  
aw 
ar I a t  the centre ( r  = 0 = 0). 

Equations (3)-(5) are transformed into finite-difference expressions at the upper 
semicircular-section of the pipe because the flow is symmetrical about the X-axis. I n  
the computation, extremely fine grids are required near the wall because of the very 
steep gradient of physical quantities. Here non-uniform grids, which are constructed 
by nodal points of 15-26, are used in the radial direction and uniform grids 
constructed by nodal points of 16-21 are applied in the circumferential direction. In 
the transformation into finite-difference expressions, the second-order central 
difference is used for all spatial derivatives. On the other hand, equi-interval 
timesteps, which amount to 720-5040 per cycle, are adopted except for low 
Womersley numbers. To advance the calculation with time increment, i t  is necessary 
to use the axial pressure gradient, tIP/aZ, in terms of known variables W and Y at 
the preceding timestep. This pressure gradient can be obtained by integrating (3) 
over the cross-section (Takami, Sudo & Sumida 1984). The equations for W ,  C2 and 
Yare solved explicitly by the unsteady method similar to the procedure of Joseph, 
Smith & Adler (1975), the initial values of them being set to  zero at all grid nodes. 
A run is terminated when the following iterative-error criterion is satisfied at all 
timesteps : 

l m n  
mn i-1 j=l 

(9) 

where F is a representative of W ,  D and Y ;  k, m and n are the number of the 
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calculation cycle and of the grid node. Three to thirty-two iterations are required to 
achieve this criterion in our calculation. 

The computations were carried out in a wide range of three parameters: the 
Womersley numbers a = 0 - 30, the Dean numbers D = 10 - 500 and the radius 
ratios Rc( = R / a )  = 7.6 - 100. 

4. Results and discussion 
Typical photographs are given in figure 3. In addition to the dimensionless 

parameters D and a, the phase in a cycle O( = ot) and the phase interval of the 
stroboscope irradiation A@ are entered for the photographs by method 0; the real 
time interval of the irradiation At( = nT,) is added for the photographs by method Q, 
Tp being the period of the oscillatory motion and n a positive integer. The left- and 
right-hand sides of the photographs correspond to the inner and outer walls of the 
pipe, respectively. Here we can classify the secondary flows into five types according 
to their flow mechanism and characteristics : (i) Dean circulation - type (I) ; (ii) 
deformed Dean circulation - type (11) ; (iii) intermediate circulation between Dean 
and Lyne - type (111) ; (iv) deformed Lyne circulation - type (IV) ; (v) Lyne 
circulation -type (V). The secondary flows of types (I) and (V), that is, the Dean and 
Lyne circulations, have been known since the works of Dean (1927, 1928) and Lyne 
(1970). Five types of secondary flow are illustrated schematically in figure 4. 

The photographs are arranged on the a DS. D chart in figure 5 and the experimental 
conditions and others are listed in table 1. The letters in the left-hand column of the 
table correspond to those in figures 3 and 5. The solid lines in figure 5, which 
distinguish the flow patterns, are drawn on the basis of both experimental and 
numerical results. 

Figure 6 displays the X-component profiles of the velocity on the Y-axis, which are 
constructed on the basis of several photographs under the same conditions, U being 
the instantaneous velocity and 0 the time-averaged velocity in a cycle. The positive 
values of U or 0 denote that the fluid moves toward the outer bend. The solid lines 
in figure 6 indicate the numerical results. 

The locus of the centre of the secondary flow in a cycle is indicated in figure 7, of 
which the upper and lower half sections are concerned with the primary and 
secondary vortices, respectively. In these figures, the filled symbols show the 
experimental results, the open symbols express the numerical ones, and the solid and 
broken lines connecting the open symbols mean that the numerical results are 
obtained by methods 0 and Q, respectively. 

Figure 8 shows the secondary flow intensity defined in $4.2. The effects of the 
Womersley and Dean numbers on the secondary flow and the foundations of flow 
classification will be discussed in detail in the following sections. 

4.1. Mechanism of secondary Jlow generation 
4.1.1. Flow for low Dean numbers (D 5 100) 

When the Dean number is less than 100, the effects of the pipe curvature are not 
appreciable. Therefore, for the low Womersley numbers less than 5.5, where the 
viscous effects extend to the central region of the pipe, the centre of the spiral motion 
of the secondary flow exists almost a t  the central part of the semicircular section of 
the pipe as shown in figures 3(a,  b )  and 5(9) and it scarcely shifts during a cycle as 
seen in figure 7 (a).  This flow pattern is named type (I). 

When the Womersley number goes up to about 10, the viscous effects become 



196 K .  Sudo, M .  Sumida and R .  Yarnane 

FIGURE 3 ( w - f ) .  For caption see p. 198. 
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FIGURE 3(g-Z). For caption see p. 198. 
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FIGURE 3. Photographs of secondary flow. The left- and right-hand sides of the photographs 
correspond to  the inner and outer walls of the pipe, respectively. The experimental conditions are 
noted under the photographs. 

restricted to the neighbourhood of the wall and the inertia effects increase relatively 
in the middle region of the pipe. Since the fluid in the middle region cannot follow 
obediently the variation of the axial pressure gradient compared to the fluid near the 
wall, the axial velocity has an annular profile which takes the form of a crest near the 
wall and the bottom in the middle part (Uchida 1956). In  flows when the Womersley 
number is a little greater than 10, the axial velocity becomes nearly uniform in the 
central region of the pipe and the magnitude of the centrifugal force and the pressure 
gradient in the direction of the pipe curvature radius becomes roughly equal there. 
As a result, the fluid near the outer wall stops moving toward the wall and the 
secondary motion in the central part of the pipe weakens. In other words, the 
stagnant region of the secondary flow appears near the outer wall and the generation 
of the stagnant region pushes the vortices toward the upper and lower walls as seen 
in figures 3 ( c )  and 5 ( r ) .  This flow pattern is called type (11). 

When the Womersley number increases slightly, the pressure gradient becomes 
superior to  the centrifugal force in the central region of the pipe in a certain period 
of a cycle and the stagnant fluid near the outer wall moves toward the inside in this 



Secondary motion of fully developed oscillatory $ow 199 

Inner 

(4 

side 

Inner Outer side 

Outer side Inner 

(4 

side Outer side 

FIGURE 4. Schematic diagrams of the secondary flow patterns. (a) Dean circulation - type (I). See 
photographs (a), (b), (f), (g), (h) ,  (n), (q),  ( t ) ,  (u) and (2) in figures 3 and 5. (b) Deformed Dean 
circulation - type (TI). See photographs (c), ( Z ) ,  (0 )  and ( r )  in figures 3 and 5. (c) Intermediate 
circulation between Dean and Lyne circulations - type (111). Additional twin vortices are induced 
in a certain period of a cycle as drawn at the right-hand side. See photographs (i) and ( w )  in figures 
3 and 5. (d )  Deformed Lyne circulation - type (IV). See figure 3 ( d ,  m). (e) Lyne circulation -type 
(V). See photographs (e), (j), (k), (a), (s), (v) and (y) in figures 3 and 5. 

period. As a result, an additional pair of vortices, which rotate in the direction 
opposite to that of the primary vortices, appears in the region near the outer wall for 
a short time. In this case, the secondary flow forms the flow pattern as shown in 
figure 4 ( c ) .  Such a flow pattern belongs to type (111). 

When the Womersley number is increased further, the additional twin vortices, 
whose cores are deviated slightly to the outside, can be observed in the central region 
throughout the cycle. This flow, shown in figures 3 ( d ) ,  4(d )  and 6(a)(iii), is referred 
to as type (IV), that is, the deformed Lyne circulation. 

The Womersley number at  which the two pairs of vortices begin to appear in 
a certain period of a cycle has been given as follows. Our numerical analysis gives 
a = 11 that is indicated by the line A in figure 5 .  The theories of Lyne (1970), 
Xalosh & Nelson (1973) and Mullin & Greated (1980) give a = 12.9, 10.6 and 10 - 11, 
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rcspcctively. The results of the present experiments have also proved these 
Womersley number values to be valid. Next, the lowest value of a a t  which the two 
pairs of vortices exist throughout a cycle is checked. The present numerical analysis 
gives a + 14, which is denoted by the line B in figure 5 ,  and this is consistent with 
the values of 13.5 and 14.1 from the visualization experiments of Munson (1975) and 
Bertelsen (1975). 

With a further increase in the Womersley number, the annular profile of the 
velocity is formed firmly and the viscous effects are restricted in the thin fluid layer 
near the wall. This means that the region of large axial velocity, which causes the 
primary vortices, moves nearer to the wall. Consequently, the primary vortices shift 
further toward the wall and the additional vortices occupy the central region of the 
section. I n  this flow pattern, both the vortices attenuate and the time-averaged 
velocity 0 decreases as seen in figures 3 ( e ) ,  5 ( s ) ,  6(a)(iv) and 7(a). This secondary 
flow is named type (V), which is known as the typical Lyne circulation. 

4.1.2. Flow for high Dean numbers (D 2 200) 
For Dean numbers more than 200, the centrifugal force exerted on the fluid 

becomes predominant in the whole region of the pipe cross-section except for the thin 
fluid layer on the wall. Therefore, the secondary flow pattern shows more complicated 
variation with Womersley number than in low Dean numbers. 

For Womersley numbers less than 5.5,  in which the centrifugal effects are 
predominant compared to  the unsteady inertia effects, the secondary flow has a 
similar pattern to that of the steady flow except in the part of a cycle in the vicinity 
of 0 = 0'. To put it concretely, the secondary flow behaves in a cycle as follows. The 
vortices exist in the inner region of the cross-section a t  the zero flow-rate phase and 
its vicinity as shown in figures 3 (f, n) and 5 ( t )  and their intensity is low ; as the flow 
rate increases, the secondary flow grows and shifts its centres toward the upper and 
lower walls, as observed in the steady flow a t  the same Dean number. Thus the 
centres of the secondary flow move about during a cycle as seen in figure 7 (b,  c). On 
the whole, the X-component of the velocity varies in much the same phase with the 
flow rate as indicated in figure 6(b)(i), and so the profile of the axial flow becomes 
similar to that of the steady flow as mentioned above. The secondary flow in this case 
belongs to  type (I). 

When the Womersley number increases and the time required for the fluid to 
circulate in the cross-section approaches the same value as a period of the centrifugal 
force acting periodically on the fluid, n / w ,  the secondary flow is intensified and the 
fluid, in plenty of momentum in the axial direction near the outer bend, is forced 
inwardly along the wall by the vivid secondary flow even in the decelerative phase, 
i.e. 0 = 90 - 180' or 0 = 270 - 360'. As a result, the fluid near the inner wall is 
accelerated in the axial direction even in the low flow-rate phase and this makes 
strong secondary flow even a t  the minimum flow rate as seen in figures 3 ( h ) ,  5 (u, 2) 
and 6(b)(ii). In  this flow, the secondary flow velocity scarcely varies during a cycle 
and the cores of the vortices are held a t  a bit of the outside in the central region of 
the half cross-sections as shown in figures 7(b)  and 7(c).  

When the Womersley number increases a bit, the unsteady inertia effects come to 
predominate in the core region of the pipe and the axial velocity becomes nearly 
uniform there. This results in, as mentioned above, the balance of the centrifugal 
force and the pressure gradient of the pipe curvature radius direction in the central 
section. The balance of the forces in the core region stops the secondary flow from 
moving near the outer wall and makes the stagnant region of the secondary flow 
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FIQURE 6(a ) .  For caption see facing page 

there. This causes the vortices to shift towards the inner region, where the axial 
velocity variation is large in a cycle, as seen in figure 3(1,0) .  This secondary flow 
belongs to type (11). 

In secondary flow of type (11), the unsteady inertia effect of the main flow is 
predominant in the central region of the pipe and the convective one of the secondary 
flow is dominant in the inner region, as mentioned already. Now a parameter, a 2 / D ,  
which means the ratio of the magnitude of the main flow inertia and that of the 
secondary flow, is made. The line C in figures 5 and 8 represents the relation between 
the Womersley and Dean numbers a t  which the pipe curvature effects on the flow 
resistance factor begin to be recognized and its expression is given as 

a2 /D = 0.655. (10) 

The intensity of the secondary flows begins to decrease suddenly over the line C as 
shown in figures 8 and 6(b)(iii), and the flow pattern changes to a great extent as seen 
in figure 5. That is, the less viscous region occupies the central part of the pipe 
because of an increase of the unsteady inertia effect, as stated in the previous 
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FIQURE 6. Profiles of the X-component of velocity on Y-axis. U and 0 are the instantaneous and 
time-averaged velocities respectively. The solid lines indicate the numerical results, and 0, 
A the experimental ones. (a)(i) a = 5.4, D = 98; (ii) a = 10.5, D = 97; (iii) a = 14.0, D = 100; 
(iv) a = 17.6, D = 9.8. (b)( i )  a = 5.6, D = 194; (ii) a = 9.9, D = 195; (iii) a = 13.5, D = 202; (iv) 
a = 17.7, D = 201; (v) a = 28.0, D = 193. (c)(i) a = 17.9, D = 493; (ii) a = 28.2, D = 491. 
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FIGURE 7 .  Locus of the centre of the secondary flow in a cycle. The primary and secondary vortices 
are shown in the upper and lower half sections of the figure, respectively. The solid and broken lines 
and open symbols show the numerical results, the filled symbols indicate the experimental ones. 
(a) D 8 100; A, V, a = 5.4, 8 = 0" and 90' (instantaneous); 0,  0, 0, 0 , a = 10.5, 14.0, 17.6 
and 28.1 (time-averaged). ( b )  D = 200; A, 7,  a = 5.6. 8 = 15" and 90" (instantaneous); 0, 
a = 9.9, 8 = 0' (instantaneous); 0, 0 ,  0 , a = 13.5, 17.7 and 28.0 (time-averaged). ( c )  D = 500; 
A,  0, 0 ,  8 = O", a = 5.6, 14.0 and 17.9 (instantaneous); 0 , a = 28.2 (time-averaged). 

paragraph, and the secondary vortices come to appear in this region at a part of a 
cycle, the cores of the vortices shifting near the upper and lower walls as shown in 
figures 3 ( i ) ,  5 (w) and 7 (b ,  c ) .  This secondary flow belongs to type (111). 

When the Womersley number increases further, the additional vortices exist all 
through a cycle and secondary flow of type (IV) is formed. The secondary flow 
pattern changes from type (IV) to type (V) with an increase of the Womersley 
number, as seen in figures 3 ( j ,  k, m, p )  and 5 (y, v) ,  for the same reasons as explained 
for the low Dean numbers. 

The lines of B and D in figures 5 and 8 show the Womersley number or the 
relation of the Womersley and Dean numbers a t  which the time-averaged velocity in 
the X-direction a t  the pipe axis changes its direction, that is, the secondary flow 
changes its pattern from type (111) to ( IV) .  These are expressed as 

In addition, lines H and G denote the Womersley number or the relations of 
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parameters a t  which the time-averaged velocity toward the inner bend a t  the pipe 
axis takes the maximum value and are expressed as 

u = 17 

u3/D = 30 
(D 5 loo),'( 
(D 2 200). J 

The lines H and G are considered as the rough border lines between secondary flow 
of type (IV) and (V).  

For the intermediate Dean numbers ranging from 100 to 200, the numerical 
solution shows that the secondary flow pattern changes roughly in the same manner 
as observed for the low Dean numbers ( D  6 100). 

4.2. Kinetic energy of the secondary flow 
In curved pipe oscillatory flow, as stated until now: two or four vortices are induced 
in the cross-section. Here we use the kinetic energy as a measure of the intensity of 
the secondary flows. It is defined as 

S = 2a2e/(pv2) = - Jr (u2 + P) r d r  dOd@, (13) 
2rc2 

where V is the dimensionless velocity of the Y-direction and e denotes the mean of 
the secondary flow velocity squared. Therefore S is the time- and space-averaged 
value of the kinetic energy of the secondary flow in a cycle. 

Curves of constant-$ are shown in figure 8. In  the figure, the boundaries classifying 
the secondary flow are shown with the broken lines A 4  and the schematic vortex 
figures are inserted. The line E denotes the flow condition a t  which the kinetic energy 
of the secondary flow becomes maximum and is expressed as 

u2/D = 0.41. (14) 

It forms the boundary between type (I) and (11) of the secondary flow a t  high Dean 
numbers. For low Womersley numbers less than 2 ,  at which the flow pattern shows 
type (I), S increases in proportion to D2.  On the other hand, S varies approximately 
with u-~D* under the condition that the inertia effects prevail compared with the 
curvature effects ; this condition occurs in the regions above the line A for D 5 100 
and above the line D for D 2 200 in figures 5 and 8. For high Dean numbers, i.e. 
D 2 200, S increases a t  first with an increase of Womersley number and then 
decreases at Womersley numbers higher than a certain value. This indicates the 
boundary across which the flow pattern changes rapidly from type (11) to (IV) 
through (111). 

5. Conclusions 
The measurements and calculations reported here reveal several features of 

secondary flow. An important conclusion induced in the developed oscillatory 
laminar flow through a circular curved pipe is that the secondary flow or vortical 
motion is classifiable into five patterns: (i) Dean circulation, (ii) deformed Dean 
circulation, (iii) intermediate circulation between Dean and Lyne circulations, (iv) 
deformed Lyne circulation and (v) Lyne circulation. The boundaries classifying the 
flow pattern are expressed in terms of the Womersley number or of the Womersley 
and Dean numbers according to the magnitude of the Dean number. 

The kinetic energy of the secondary flow, 8, increases with D2 for low Womersley 
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numbers (a 5 2 )  and with u-~D* for high Womersley numbers which are a 2 11  at 
D 5 100 and a 2 (11.3D)1/2.s at D 2 200. However, S decreases at the Womersley 
number higher than the value given by the expression of u2/D = 0.655. 
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